\begin{tabbing} $\forall$\=${\it ds}$:fpf(Id; $x$.Type), ${\it da}$:fpf(Knd; $k$.Type), ${\it es}$:event\_system\{i:l\}, $i$:Id, $e_{1}$,$e_{2}$:\{\=$e$:es{-}E(${\it es}$)$\mid$ \+\+ \\[0ex]loc($e$) = $i$\} , \-\\[0ex]$L_{1}$,$L_{2}$:(event{-}info(${\it ds}$;${\it da}$) List). \-\\[0ex]($\neg$($L_{1}$ = [])) \\[0ex]$\Rightarrow$ ($\neg$($L_{2}$ = [])) \\[0ex]$\Rightarrow$ ($\forall$$x$:Id. subtype\_rel(es{-}vartype(${\it es}$; $i$; $x$); fpf{-}cap(${\it ds}$; id{-}deq; $x$; top))) \\[0ex]$\Rightarrow$ \=($\forall$$e$:es{-}E(${\it es}$). \+ \\[0ex](loc($e$) = $i$) \\[0ex]$\Rightarrow$ subtype\_rel(es{-}valtype(${\it es}$; $e$); fpf{-}cap(${\it da}$; Kind{-}deq; es{-}kind(${\it es}$; $e$); top))) \-\\[0ex]$\Rightarrow$ (es{-}hist\{i:l\}(${\it es}$;$e_{1}$;$e_{2}$) = append($L_{1}$; $L_{2}$) $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) \\[0ex]$\Rightarrow$ $\exists$$e$$\in$($e_{1}$,$e_{2}$].(es{-}hist\{i:l\}(${\it es}$;$e_{1}$;es{-}pred(${\it es}$; $e$)) = $L_{1}$) $\wedge$ (es{-}hist\{i:l\}(${\it es}$;$e$;$e_{2}$) = $L_{2}$) \end{tabbing}